


Introduction by the technical leader

Riccardo Santoro ïTrenitalia



ADIGITALMOBILITYSYSTEMISANEXTENSIONOFTHISENVIRONMENT,

acting as a trusted knowledgeableand intelligent provider of solutions to mobility problems that

arise in the pursuit of theCustomerõsdaily lives:

Ç its main product is mobilityproblem-solving

Ç its main productionasset is mobilityknow-how

Customers, most personnel and some suppliers ALREADY LIVE AND WORK IN A DIGITAL

ENVIRONMENT:

they describe themselves,their needs or their products, procure and exchangegoodsand services,

plan, coordinateand communicatethroughdigital technology.

A DIGITAL MOBILITY SYSTEN IS A 

òCONGNITIVE HUBó PROVIDER OF 

MOBILITY SOLUTIONS

Where we are heading



What we need to get there

Åthe ability to coordinate the execution of complex 
computational tasks that are 

Åinherently distributed 

Åon multiple heterogeneous nodes 

Åof an open network 

Åwith no central control

ÅSystems (and organizations) are interoperable if they can 
participate in such tasks



Where we started from

Conventional approaches to meeting this challenge, conditioned by the available 
technology of the time, have led to the artificial alteration of the essential 
features of the problem statement:

ÅThe adoption or regulation of common formats and protocols for inter-process 
communication aimed at removing heterogeneity;

ÅThe local importation of pre-defined remote data sets aimed at removing the 
distributed nature and the variety of data resources;

ÅThe centralized governance of the scope of multimodal mobility services and of 
data exchange processes, both aimed at controlling the extension and 
openness of the network.



How we are addressing the challenge

ÅAdoption of common formats 
and protocols

ÅLocal importation of pre-
defined remote data sets

ÅCentralized governance of 
formats and data flows

ÅAdoption of shared machine-
interpretable sematics 
(ontology) that abstracts from 
formats

ÅLink data across the web

ÅCollaborative governance of 
ontology



7

ÅHides the mechanics of interoperability from 

applications 

ÅGives applications access to the web as a shared 

data base (the ñweb of transportation dataò)

ÅAllows multiple concurrent implementation and 

deployment options

ÅReduces the overhead of ñgovernanceò

Interoperability Framework



The fundamental blocks



What has been achieved so far



ST4RT Project Objective

ÅExtend automated bi-directional conversion capabilities
between FSM and TAP-TSI specifications(*) in a ñpre
bookingòuse case

ÅDevelop and deploy a technical demonstrator of the 
new òST4RT converterò and measure outcomes

10

(*) An XML ñunofficialò version of the TAP-TSI B.5 basic parameter has been used in the ST4RT project



ST4RT
ÅS2R Open Call

ÅCoordinated by UNIFE
ïCEF

ïRINA-C BE

ïHITRAIL

ïOLTIS

ïPOLIMI

ïTRENITALIA

ïUIC

ÅIT2Rail coordination

ÅStart November 2016

11

ST4RT project at a glance



12

Work Package structure



Å Data management plan

Å Public website setup

Å Newsletters and Brochure

Å Analysis of state-of-the-art ontology conversion tools

Å Extension of S2R reference ontology

Å Extension of annotations for mapping from legacy data models to ontologies

Å Mapping between FSM/TAP-TSI specifications and extended reference ontology

Å Archetypal implementation of converter

Å Pilot demonstrator on Niklas broker and test results report

Å Merging of ST4RT and IT2RAIL semantic processing frameworks

Å Integration of archetypal implementation of converter in IT2RAIL interoperability
framework

Å Pilot demonstrator of ST4RT converter in IT2RAIL interoperability framework with
«FSM Simulator» and test results report

Å Pilot demonstrator of FSM Offering process with IT2RAIL semantic Travel Expert
broker

13

Project outcomes



Design and Reference implementation 

of Interoperability Framework 

Converters

Matteo Rossi ïPolitecnico di Milano

Alessio Carenini - CEFRIEL



Goal

Enable communication between services that 

use different data specifications/standards



Typicalapproach: 1:1 data mapping

Syntactic model

(Format A)
Syntactic model

(Format B)



Typical problem in 1:1 data mapping: 

overwhelming complexity

Syntactic model

(Format C)
Syntactic model

(Format D)

Syntactic model

(Format A)
Syntactic model

(Format B)



The ST4RT approach: any-to-one mapping

Semantic model

(reference ontology)

Syntactic model

(Format A)
Syntactic model

(Format B)

lifting & lowering 

specification

lifting & lowering 

specification



Problem mitigation in any-to-one: 

reduced complexity

Semantic model

(reference ontology)

Syntactic model

(Format C)
Syntactic model

(Format D)

Syntactic model

(Format A)
Syntactic model

(Format B)



ST4RT mapping solution

ÅWe opted for an annotation-based approach
ïSimilar to JPA annotations used in Object-Relational 

mappings

ïAnnotations must be attached to Java classes

ÅWe defined a set of generic annotations that can be 
added to Java classes to enable transformation to RDF



Example (simple) annotation

@RdfsClass("customer:Passengerέ)

public classContactInformationextendsFSMID



Example (more complex) annotation
@RdfsClass(
"customer:Passengerέ

)

public class ContactInformation
extends FSMID{
ώΧϐ

@Sparql(
name = "getAlpha2ByName", 
inputs = {"country"}

)

@RdfProperty(
"st4rt:isInCountry_Alpha2"

)
@XmlElement(name = "Country")
protected String country;

ώΧϐ
}

<query>
<name> getAlpha2ByName </name>
<inputs>

<input> input1 </input>
</inputs>
<comment>
Input: Country name (??input1)
Output: ??input1's Alpha2 code

</comment>
<sparqlquery><![CDATA[
tw9CL· ǎǘпǊǘΥώΧϐ 
tw9CL· ŎƻǳƴǘǊƛŜǎΥ ώΧϐ 
SELECT ?alpha2
WHERE {
?subject
countries:countryCodeISO3166Alpha2
?alpha2 ;

countries:countryNameISO3166Short
??input1 }
]]></sparqlquery>
</query>



Inside the converter

1. Convert the incoming message into Java objects

2. Use the annotations of the incoming model and generate RDF data from class 

instances

3. Load RDF data, ontology and master data in a RDF repository

4. Use the annotations of the destination model and create instances of Java objects 

from RDF data

5. Convert resulting Java objects into destination message

Incoming message

(Format A)

Destination message

(Format B)



Developing a ST4RT converter: key technologies

Lowering Transformation:

Lifting Transformation:

One Time Transformation:

Intermediate 

Ontology

Named

Graph

XML
(Source)

Java Object
(Source)

XML
(Target)

Java Object
(Target)

XSDs Java Classes

JAXB Unmarshal

JAXB Marshal

S
P

A
R

Q
L

S
P

A
R

Q
L

JAXB

Auto Generate



Developing a ST4RT converter

1. Generate Java classes from messages specifications (XML 
Schema, JSON Schema, é)

2. Build/reuse an ontology to formalize concepts and relations

3. Identify external/master data required for the conversion and 
convert it in RDF

4. Annotate Java classes using ST4RT annotations and the ontology



ST4RT Converter: summing up

ÅPackaged as a Java library

ÅDoes not mandate any specific input or output 
format

ïAll formats that can be converted to Java objects can 
be used

ïNot strictly bound to IT2Rail ontology



Pilot demonstrators of Interoperability 

Framework Converters and Asset Manager

Ugo Dell'arciprete - Hit Rail

Riccardo Santoro - Trenitalia

Alessio Carenini - CEFRIEL



Demo scenario 1

Ugo Dell'arciprete - Hit Rail



Process 

Å The scenario for the demo simulates a reservation process between SNCF and 

Trenitalia

Å SNCF is assumed to use FSM messages, and Trenitalia XML 918 messages

Å SNCF (simulated by an OG operator) sends to the converter an FSM 

PreBookRequest message

Å The converter converts it into a 918 ReservationRequest

ÅTrenitalia (simulated by Hit Railôs tool ñBoomerangò) receives the request and 

sends back a 918 ReservationReply message

Å This is converted by the converter into an FSM PreBookResponse

Å The OG operator receives on its screen the response, and is able to retrieve from 

the system the time stamps of all detail operations performed



Test data 

Å The 918 standard defines a whole set of messages (availability inquiry, reservation

request, reservation reply, partial or complete reservation cancellation, é)

Å Each message can in turn have different contents (a reservation request can 

concern a seat, a berth, a couchette, first or second class, male or female, é)

Å FSM has an even larger variety of possibilities

Å In order to keep the test manageable, it has been decided to use as test message a 

reservation request for berths, in 5 different cases:

Å One single berth, in first and second class

Å One double berth, in first and second class

Å Two double berths in second class

Å The parameters irrelevant for the conversion do not change (date and time of 

departure, number of train, departure and arrival stations, é)



Architecture

Å The test environment 

is located within the 

HEROS platform 

provided by Hit Rail.

Å The HEROS platform 

is based around a 

Middleware, or 

Broker, called 

NIKLAS. 



High level KPIs

Time between acceptance of the FSM PreBookRequest by NIKLAS and sending out of the FSM

PreBookResponse (Overall response time), decomposed in:

Translation of request duration (time taken by translator software only), from delivery by

Niklas to reception of translated message by Niklas

Niklas request routing/processing overhead time (without translation)

Boomerang total response message creation time

Translation of response (time taken by translator software only), from delivery by Niklas to

reception of translated message by Niklas

Niklas response routing/processing overhead time (without translation)

As high level KPI we chose the total response time, i.e. from sending of FSM 

request to reception of FSM response. We also took into account a set of partial 

times, corresponding to single technical steps (translation FSM > 918, 

Boomerang answer, translation 918 > FSM, etc.)



Internal KPIs

To evaluate in particular the performance of the semantic translator, rather than 

the NIKLAS middleware, in addition to the ñhigh levelò activities OG has inserted 

in the translator software the appropriate logging points enabling to record the 

duration of individual translation sub-processes.

Step Description

Entity manager instantiated Creating an instance of entity manager

Ontology model created Loading defined ontology files e.g. Berth.owl etc.

RDFS reasoner and 

inference_engine created

Creating instances of the reasoner and the inference_engine in Jena 

= related to point Inference model

Lookup annotated classes Searching for annotated classes (annotation@RdfsClass)

Check if message is SOAP and 

get its content

Checking if the SOAP Envelope is contained and reading the 

content of the message (*)



Internal KPIs (2)

Step Description

Input and output classes found Searching for input and output classes according to @RdfClass at 

root element in message (e.g. 

@RdfsClass("st4rt:ProvisionalBookingRequestMessage"))

XML conversion to object Creating JAVA objects from incoming XML message

RDF graph created Creating RDF graph from objects

Graph printed Programmerôs output to the console ïshowing RDF triples.

Inference model Creating new relationships in RDF graph based on ontologies 

Get converted object from RDF 

graph

Creating JAVA object from RDF graph

Object conversion to XML Creating outgoing XML message from JAVA objects

Conversion TOTAL Duration of the whole conversion



Test sessions

Message Passenger Accomodation Type Class Train no From To

1 1SINGLE FIRST 1955ROMA_TERMINI = 8308409

PALERMO_CENTRALE = 

8312002

2 1DOUBLE FIRST 1955ROMA_TERMINI = 8308409

PALERMO_CENTRALE = 

8312002

3 1SINGLE SECOND 1955ROMA_TERMINI = 8308409

PALERMO_CENTRALE = 

8312002

4 1DOUBLE SECOND 1955ROMA_TERMINI = 8308409

PALERMO_CENTRALE = 

8312002

5 2DOUBLE SECOND 1955ROMA_TERMINI = 8308409

PALERMO_CENTRALE = 

8312002

Different test sessions have been performed to collect the KPIs measurements 

necessary to evaluate the performance of the converter.

Each test session consisted in repeated launching of the 5 message types 

below. For each session each message was sent 10 times, in order to make it 

possible to calculate significant average values of the indicators.



High level KPIs results from NIKLAS


