

IFC-WP4-D-CEF-004-05 Page 1 of 31 16/07/2018

Contract No. H2020 ï 730842

SEMANTIC TRANSFORMATIONS FOR RAIL

TRANSPORTATION

D4.1 ï Analysis of state-of-the-art ontology conversion tools

Due date of deliverable: 31/10/2017

Actual submission date: 06/08/2018

Leader/Responsible of this Deliverable: Marco Comerio (Cefriel)

Reviewed: Y/N

Document status

Revision Date Description

1 25/10/2017 First issue

2 01/11/2017 Revised version

3 03/11/2017 Final version after TMC approval

4 16/07/2018 New version after request for revision

Project funded from the European Unionôs Horizon 2020 research and innovation

programme

Dissemination Level

PU Public X

CO Confidential, restricted under conditions set out in Model Grant Agreement

CI Classified, information as referred to in Commission Decision 2001/844/EC

Start date of project: 01/11/2016 Duration: 24 months

IFC-WP4-D-CEF-004-05 Page 2 of 31 16/07/2018

Contract No. H2020 ï 730842

EXECUTIVE SUMMARY

This deliverable provides the analysis, synthesis and comparison of state-of-the-art tools for

semantic annotation of documents. Two different categories (i.e., manual and semi-automatic) of

semantic annotation tools are analyzed and compared.

Moreover, this deliverable describes four different approaches to semantic interoperability that can

be distinguished according to two fundamental dimensions: the data schema mapping (any-to-any

vs. any-to-one) and the integration logic (centralized vs. decentralized). The any-to-one centralized

approach to semantic interoperability appears to be powerful and well-suited for managing complex

and dynamic environments, like the one analysed by ST4RT, where a common shared reference

ontology is available. A brief overview of any-to-one centralized solutions to semantic interoperability

defined in two research projects (i.e., the S2R Lighthouse IT2Rail project and the STREP EU project

SEEMP) is provided.

Finally, two equivalent any-to-one centralized solutions for the development of the ST4RT converter

are proposed. The first solution is similar to the one proposed by the IT2Rail project; the second

solution presents similarities with the one proposed by the SEEMP project although supported by

the latest technologies. In order to realize the two proposed solutions, a list of requirements is

identified and tools that cover these requirements are selected, compared and analyzed. From the

preliminary analysis of the selected tools, a list of missing features to fully support the two solutions

for the development of the ST4RT converter is identified.

IFC-WP4-D-CEF-004-05 Page 3 of 31 16/07/2018

Contract No. H2020 ï 730842

ABBREVIATIONS AND ACRONYMS

Abbreviation Description

API Application Programming Interface

DAML DARPA Agent Markup Language

EDG Enterprise Data Governance

ES Employment Services

EU European Union

FSM Full Service Model

GA Grant Agreement

H2020 Horizon 2020 framework programme

HTML HyperText Markup Language

IT2Rail Information Technologies for Shift2Rail

JAXB Java Architecture for XML Binding

JPA Java Persistence API

JU Shift2Rail Joint Undertaking

POJO Plain Old Java Object

RDF Resource Description Framework

RDF4J Resource Description Framework for Java

S2R Shift2Rail

SEEMP Single European Employment Market-Place

SHACL SHApes Constraint Language

ShEx Shape Expressions

SPARQL SPARQL Protocol and RDF Query Language

SPIN SPARQL Inferencing Notation

ST4RT Semantic Transformations for Rail Transportation

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML eXtensible Markup Language

IFC-WP4-D-CEF-004-05 Page 4 of 31 16/07/2018

Contract No. H2020 ï 730842

XSD XML Schema Definition

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

TABLE OF CONTENTS

Executive Summary .. 2

Abbreviations and Acronyms .. 3

Table of Contents.. 4

List of Figures ... 5

1. Semantic Annotation tools: state-of-the-art ... 6

1.1 Manual Semantic Annotation Tools ... 6

1.2 (Semi-) Automatic Semantic Annotation Tools .. 7

2. Semantic Conversion Tools: state-of-the-art ... 9

2.1 Different Approaches to Semantic Interoperability ... 10

2.2 Focus on Any-To-One Centralized Solutions ... 14

2.2.1 The IT2Rail Solution to Semantic Interoperability ... 14

2.2.2 The SEEMP Solution to Semantic Interoperability ... 16

2.3 Any-To-One Centralized Solutions Investigated By ST4RT ... 18

2.3.1 First Solution .. 18

2.3.2 Second Solution... 20

2.3.3 Comparison between the two Solutions ... 22

3. Selection of Tools and Identification of Missing Features .. 22

3.1 Shacl ... 25

3.2 Java Architecture for XML Binding (JAXB) .. 26

3.3 TopBraid Composer .. 26

3.4 GraphDB ... 27

3.5 Empire .. 27

3.6 Pinto .. 27

3.7 Preliminary Analysis of Missing Features .. 28

4. Conclusions .. 29

References ... 29

IFC-WP4-D-CEF-004-05 Page 5 of 31 16/07/2018

Contract No. H2020 ï 730842

LIST OF FIGURES

Figure 1: an example of manual semantic annotation tool (OntoMap) ... 7

Figure 2: an example of a semi-automatic semantic annotation tool (GoNTogle) 9

Figure 3: any-to-any centralized approach to semantic interoperability ... 11

Figure 4: any-to-one centralized approach to semantic interoperability ... 12

Figure 5: any-to-any decentralized approach to semantic interoperability 13

Figure 6: any-to-one decentralized approach to semantic interoperability 13

Figure 7: Overview of the IT2Rail mapping process .. 15

Figure 8: the IT2Rail lifting/lowering process ... 16

Figure 9: An overview of the SEEMP solution ... 17

Figure 10: The SEEMP Connector Architecture .. 18

Figure 11: Set up of the first solution ... 19

Figure 12: The conversion process of the first solution ... 20

Figure 13: Set up of the second solution ... 21

Figure 14: The conversion process of the second solution .. 21

IFC-WP4-D-CEF-004-05 Page 6 of 31 16/07/2018

Contract No. H2020 ï 730842

1. SEMANTIC ANNOTATION TOOLS: STATE-OF-THE-ART

State-of-the-art semantic annotation tools can be divided into two categories according to their level

of automation: manual and semi-automatic.

Manual annotation can be accomplished using diverse authoring tools that normally provide an

integrated environment for authoring and annotating text. The utilization of humans for the process

of annotation is very expensive and often introduces errors, mainly due to the following factors:

utilization of highly complex coding schemas, inconsistencies in the labeling among different

annotators and familiarity with the domain.

To overcome these problems, tools that can lead the annotation process automatically have been

proposed. Currently, these tools are mainly semi-automatic approaches while fully automatic

systems are still a challenge. These tools provide the scalability needed to annotate existing

documents of the deep Web and facilitates the annotation of new documents. Moreover, they

facilitate the use of multiple ontologies to annotate the same document.

1.1 MANUAL SEMANTIC ANNOTATION TOOLS

In the following, a list of the state-of-the-art manual semantic annotation tools is provided.

CREAM [10] is a manual annotation editor that runs in a Web browser. The document-based

annotation is carried out by selecting part of the text and then dropping them on the desired ontology

class or, once a class has been chosen, in the property template for that class, in order to instantiate

property values (e.g., a personôs name or date of birth).

OntoMat [11] (see Figure 1) and SMORE [14] are manual semantic annotation editors for Web

pages that support ontology navigation in order to select classes and properties and create triples to

be added to the HTML pages. They also verify the domain and range on annotations to detect

inconsistencies.

The W3C Annotea annotation framework [13] supports collaborative semantic annotation of

documents accessible over the Internet, in multiple document formats (e.g., HTML, PDF, images,

and video). The framework uses RDF to model annotations as a set of statements. Annotations

range from simple text comments, through hyperlinks, to controlled vocabulary statements (e.g.,

WordNet) and ontologies.

AKTiveMedia [1] is a user-centric system for annotating documents with support of text, images and

HTML documents (containing both text and images) with ontology-based and free-text annotations.

Both author and reader can perform annotations allowing the utilization of different ontologies. The

annotations are not stored in the document but separately with authorship allowing users to share

comments and annotations with other members of the community using a centralized server. Most

IFC-WP4-D-CEF-004-05 Page 7 of 31 16/07/2018

Contract No. H2020 ï 730842

annotations are done manually, but various techniques are available to reduce the effort of

annotating.

Figure 1: an example of manual semantic annotation tool (OntoMap)

1.2 (SEMI-) AUTOMATIC SEMANTIC ANNOTATION TOOLS

In the following, a list of the state-of-the-art semi-automatic semantic annotation tools is provided.

AeroDAML [16] is a knowledge markup tool that automatically generates DAML annotations on web

pages after the application of natural language extraction techniques. AeroDAML maps proper nouns

and common relationships with classes and properties in DAML ontologies. AeroDAML has two

different modes of utilization. The web-enabled version of AeroDAML supports annotation with a

default generic ontology of commonly found words, classes, and relationships. The user enters a

URI and AeroDAML responds with the DAML annotation for the URI normally associated to a web

page. The client-server version of AeroDAML supports annotation with customized ontologies. In

this version, the user must enter a file name, and AeroDAML returns the DAML annotation for the

text document.

Cerno [15] is a framework for semi-automatic semantic annotation of text documents according to a

domain-specific semantic model. Cerno uses lightweight techniques and tools for code analysis and

IFC-WP4-D-CEF-004-05 Page 8 of 31 16/07/2018

Contract No. H2020 ï 730842

markup, requiring limited human effort for adaptation to a new domain. The Cerno framework

comprises a process for defining keywords and grammar-based rules so that it can identify instances

of concepts in a textual document and an architecture that applies the rules to annotate and extract

instances that are identified in a document.

DBpedia Spotlight [17] is a tool for automatically annotating mentions of DBpedia resources in text,

providing a solution for linking unstructured information sources to the Linked Open Data cloud

through DBpedia. DBpedia Spotlight recognizes that names of concepts or entities have been

mentioned and subsequently matches these names to unique identifiers

GoNTogle [7] (see Figure 2) offers a framework for semantic ontology-based annotations of different

document formats (doc, pdf, txt, rtf, odt, sxw, etc.). It allows the annotation of the whole documents

or fragments of it. This framework supports manual and automatic annotation, where the automatic

annotation is proposed with a learning method that explores past annotations made by the user and

textual information to make annotation suggestions automatically. Annotations are stored in a

centralized ontology server maintaining them separate from the document. GoNTogle provides

advanced searching facilities through the utilization of a flexible combination of keyword-based and

semantic-based search over the different document formats.

The KIM Semantic Annotation Platform [17] is an extendable platform for knowledge management

that offers facilities for metadata creation, storage, and semantic-based search. KIM centers its

attention on assigning to the entities in the corpus links to their semantic descriptions, provided by

the PROTON ontology that, apart from containing around 250 named entity classes and 100

properties, is pre-populated with a large number of instances.

Magpie [6] is a suite of tools that supports the interpretation of Web pages and collaborative sense

making. It annotates Web pages with metadata in a fully automatic fashion and needs no manual

intervention by matching the text against instances in an ontology. Magpie relies on a pre-specified

ontology which makes the system domain-dependent. PowerMagpie [9] is an extension of Magpie

that identifies automatically, at runtime, the most appropriate ontology to be used for annotation.

MnM [20] is a semantic annotation tool that provides support for annotating Web pages with

semantic metadata. This support is semi-automatic since the user must provide some initial

information by manually annotating documents before the system can take over. It integrates a Web

browser, an ontology editor and a tool for Information Extraction and it can be considered as a ñnext-

generation ontology editorò since it is Web-based and provides facilities for large-scale semantic

annotation of Web pages.

Open Calais [20] is a web service offered by Reuters, which automatically creates rich semantic

metadata from an unstructured text source. OpenCalais performs natural language processing

(English and French) and also uses machine-learning techniques to define entities in text. Entities

are divided into named entities (people, companies, books, albums, etc.), facts (political events, etc.)

and events (sports, change of command). Using this information, it is possible to construct maps (or

graphs or networks) linking documents to people, companies, places, and various other entities.

SemTag [5] is the semantic annotation component of a platform, called Seeker, a large-scale

semantic tagging tool, which facilitates the annotation of the deep web. SemTag uses structural

analysis to annotate web documents and uses a standard ontology to annotate text with its terms in

IFC-WP4-D-CEF-004-05 Page 9 of 31 16/07/2018

Contract No. H2020 ï 730842

an automated style. SemTag is designed to operate as a centralized application that can access

database records and the comprehending metadata, features that bring advantages over local

taggers.

Thresher [12] is a tool that presents a web interface that gives the ability for non-technical users to

easily mark-up examples of a particular class. By analogy, Thresher learns from these examples so

it can induce wrappers automatically that can be applied to the same page or ñsimilarò web pages.

Thresher is aimed to Web pages that present similar content (same type of object), normally web

pages fed by relational data through a template and by analogy extracts the corresponding

information.

Figure 2: an example of a semi-automatic semantic annotation tool (GoNTogle)

2. SEMANTIC CONVERSION TOOLS: STATE-OF-THE-ART

Semantic correspondences are often captured by message transformation rules that map names,

values, and structures in the messages exchanged by different systems. As stated in [23], this

approach can be seen as semantically neutral, in that it does not require the mappings to account

for the way in which the source and the target refer to real entities. This strategy can be seen as a

pragmatic way to address semantic interoperability in many common situations when it is reasonable

to assume that the interpretations given by the cooperating systems are consistent.

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiq7fSO0b3VAhVCQBQKHahBBYsQjRwIBw&url=https://www.researchgate.net/publication/220853909_GoNTogle_A_Tool_for_Semantic_Annotation_and_Search&psig=AFQjCNHzt6MeK-zq1w_f6aSiaqIBEvkvrA&ust=1501937970949206

IFC-WP4-D-CEF-004-05 Page 10 of 31 16/07/2018

Contract No. H2020 ï 730842

Being neutral with respect to semantics is reasonable in many situations, but it doesnôt work in

general. In fact, this approach assumes the reliability of some implicit agreement between parties

involved in message exchanges. For instance, guessing that two attributes refer to the same entity

if they have the same name is based on the assumption that labels are uniformly interpreted by all

parties. This could be acceptable within organizational boundaries, where naming policies can be

enforced and controlled, but not realistic in large and geographically distributed organizations, such

as the European transport service providers analysed by the ST4RT project in the context of the

Shift2Rail IP4 program. In these scenarios, the reach of semantic agreements is problematic:

accurate derivation of meaning cannot be implicit, and therefore the semantic correspondence in

message exchanges requires specific tools and methods.

Semantic conversion tools aim at ensuring that data embedded within messages are interpreted by

the sender and the receiver as representing the same concepts, relations, or entities in a suitable

abstraction of the real world. Basically, semantic conversion tools are needed to ensure the

semantic interoperability between two systems (i.e., the sender and the receiver) even when they

adopt different standards for their message exchanges.

2.1 DIFFERENT APPROACHES TO SEMANTIC INTEROPERABILITY

According to the classification proposed in [23], the different approaches to semantic interoperability

can be distinguished on two fundamental dimensions:

1. schema mappings:

¶ any-to-any: each data schema used by a service provider is mapped to any other

data schema used by cooperating service providers;

¶ any-to-one: each data schema is mapped to a single reference data schema.

2. integration logic:

¶ centralized: the data integration is executed in a single, distinguished node;

¶ decentralized: the data integration process is distributed among multiple, functionally

equivalent nodes.

IFC-WP4-D-CEF-004-05 Page 11 of 31 16/07/2018

Contract No. H2020 ï 730842

Integrator
D1Ω

D3ΩD2Ω

mapping

mapping

mapping

Data Schema
D1

Data Schema
D2

Data Schema
D3

interpretation

interpretation interpretation

any-to-any centralized

Figure 3: any-to-any centralized approach to semantic interoperability

Figure 3 shows the any-to-any centralized approach to semantic interoperability. In this approach,

data schemas are interpreted and mapped to the others without using a reference ontology and the

integration logic is provided by a specific component, the integrator.

The integrator creates a model for each data schema based on its interpretation of the schema.

Mappings, however, are applied directly between pairs of inner models. In this approach, the

integrator designers are the only óósemantic authorities,ôô and the overall system behavior is the

product of their interpretation of data schemas. In this context, misinterpreting a single item of a data

schema could cause errors in message exchanges.

In conclusion, any-to-any centralized integration models are well-suited for closed environments.

Adopting this model in open environments would make harder the mapping definition and would

increase the risk of wrong interpretations.

IFC-WP4-D-CEF-004-05 Page 12 of 31 16/07/2018

Contract No. H2020 ï 730842

Integrator
D1Ω

D3ΩD2Ω

mapping mapping

mapping

Data Schema
D1

Data Schema
D2

Data Schema
D3

interpretation

interpretation interpretation

any-to-one centralized

ontology

Figure 4: any-to-one centralized approach to semantic interoperability

Figure 4 shows the any-to-one centralized approach to semantic interoperability. In this approach,

the data schemas are mapped to a single ontology managed by a specialized application or service

(the component Integrator in Figure 4). As in the previous approach, the integrator creates a model

for each data schema based on its interpretation of the schema. Mappings, though, end up at a

unique ontology maintained by the integrator.

Similarly to what happens for the any-to-any centralized approach, the integrator designers are the

only óósemantic authorities,ôô and the overall system behavior is the product of their interpretation of

data schemas. In addition, designers are requested to map their interpretation of data schemas with

respect to a single, fixed ontological backbone, which requires additional skills when compared with

the task of mapping data schemas case by case, based on local knowledge and ad hoc

transformations.

In summary, any-to-one centralized integration models are powerful and well-suited for managing

complex and dynamic environments. Nevertheless, this approach requires careful studying of the

trade-offs between the expressiveness of ontology languages, the generality of schema mappings,

and computability of integration algorithms. Solid any-to-one centralized solutions should be based

on high-quality ontologies and expressive mapping languages, but the resulting ability to efficiently

perform complex reasoning tasks is tied to limits on the scalability of the integration system.

IFC-WP4-D-CEF-004-05 Page 13 of 31 16/07/2018

Contract No. H2020 ï 730842

mapping

mapping

mapping

Data Schema
D1

Data Schema
D2

Data Schema
D3

any-to-any decentralized

D1D2
D3D2 D2D3

D1D3

D2D1
D3D1

mapping

mapping

mapping

S2 S3

S1

Figure 5: any-to-any decentralized approach to semantic interoperability

Figure 5 shows the any-to-any decentralized approach to semantic interoperability. In this approach,

the mapping between data schemas is defined locally without resorting to any overall reference

ontology and integrator component. The mapping is used locally by specific services to translate

incoming data according to the local data schema. Figure 5 depicts the services S1, S2, and S3,

each holding the mapping to the data schemas of the other two. Basically, the integration logic is

distributed among services and is accomplished by mapping schemas to one another.

To conclude, the any-to-any decentralized approach to semantic interoperability, more than an

option, is the only model available when the possibility of sharing an ontology or resorting to

centralized integration services does not exist. The disadvantage in using this approach is that

semantics are distributed in systems that are strongly isolated from one another. Moreover, in case

of a high number of different data schema, scalability issues can emerge.

interpretation

Data Schema
D1

Data Schema
D2

Data Schema
D3

any-to-one decentralized

(D1+D3)D2
ontology (D1+D2)D3

(D2+D3)D1

interpretation

interpretation

S2 S3

S1

Figure 6: any-to-one decentralized approach to semantic interoperability

IFC-WP4-D-CEF-004-05 Page 14 of 31 16/07/2018

Contract No. H2020 ï 730842

Figure 6 shows the any-to-one decentralized approach to semantic interoperability. In this approach,

the data schemas are mapped to a common reference ontology. The mapping between schemas is

then stored locally, and each schema is mapped to the other ones with interpretations of ontology

fragments that correspond to the union of their schemas. The mapping is used locally by specific

services to translate incoming data according to the local data schema.

Whereas centralized applications are based on explicit decisions about how data schemas map to

each other, decentralized models require semantic decisions to be made independently throughout

the network. Nevertheless, as a rule, these decisions are not assessed by any global authority, and

the process of converging to a uniform semantics can be influenced but not controlled.

In conclusion, although the any-to-one decentralized integration is a viable solution for handling

highly dynamic systems, it requires the nontrivial task of making all participants compliant with a

common conceptualization. To deploy this model, the availability of well-founded ontologies is

necessary but not sufficient. In fact, it is crucial to managing specific policies that allow dealing with

the uncertainty that is always associated with the semantics of data coming from external information

sources.

2.2 FOCUS ON ANY-TO-ONE CENTRALIZED SOLUTIONS

As mentioned above, the any-to-one centralized approach to semantic interoperability is powerful

and well-suited for managing complex and dynamic environments, like the one analysed by ST4RT,

where a common shared reference ontology is available. In the following, a brief overview of any-to-

one centralized solutions to semantic interoperability defined in two research projects is provided.

2.2.1 The IT2Rail Solution to Semantic Interoperability

The Shift2rail lighthouse project IT2Rail adopts the any-to-one centralized approach for the

development of the Packaged Resolvers inside the Interoperability Framework. Figure 7 shows an

overview of the approach adopted by the IT2Rail project. The figure shows that, if a mapping from a

source standard A to a target standard B must be done, then the incoming data must be ñliftedò from

the standard A to the reference ontology; then, the ontology-respecting data must be ñloweredò to

the target standard B. If the whole mapping concerns a request/response mechanism, where a

request made using standard A is mapped onto a request made using standard B, and then the

response produced, which obeys standard B, is mapped onto data obeying standard A, then the

lifting/lowering mechanism is done twice:

1. The incoming request is lifted from standard A to the reference ontology.

2. The ñliftedò request is ñloweredò from the reference ontology to standard B.

3. The response produced according to standard B is ñliftedò to the reference ontology.

4. The ñliftedò response is ñloweredò to standard A.

IFC-WP4-D-CEF-004-05 Page 15 of 31 16/07/2018

Contract No. H2020 ï 730842

Figure 7: Overview of the IT2Rail mapping process

Figure 8 details the lifting/lowering process in the case where for both the source and target

standards the data representation is defined through XSD files. The proposed approach takes into

account the technologies that are available to convert XML data representations into Java objects

(and vice-versa).

The generated Java classes are then used at runtime to automatically marshal/unmarshal XML files

to/from Java objects. In essence, these intermediate Java classes, which are produced only once

and for all, provide a representation of the schema of exchanged data and can be considered as a

proxy for the original XSD files. In particular, it is this Java code that is ultimately annotated to guide

the mapping from the concepts in the legacy standards to those in the reference ontology, and vice-

versa.

As Figure 8 shows, in the proposed approach, during lifting, the source XML message is

unmarshalled to a java object, and a named graph is produced based on the ñliftingò annotations and

on the intermediate ontology. Based on the target standard and the type of the message, the proper

java object is created. The object attributes are filled using the java class annotations and information

from the stored named graph (a set of RDF triples). Finally, the resulting object is marshalled to an

XML message in the target standard, also using the ñloweringò annotations.

Semantic model
(reference ontology)

Syntactic model
(Standard A)

Syntactic model
(Standard B)

lifting & lowering

specification

lifting & lowering

specification

IFC-WP4-D-CEF-004-05 Page 16 of 31 16/07/2018

Contract No. H2020 ï 730842

Figure 8: the IT2Rail lifting/lowering process

2.2.2 The SEEMP Solution to Semantic Interoperability

Another example of an any-to-one centralized approach to semantic interoperability is provided by

the SEEMP (IST-4-027347-STREP) EU project. The SEEMP project developed in a prototype an

Interoperability infrastructure for allowing the interoperability among the hundreds of public and

private Employment Services (ESs) that exist in Europe.

As described in [4] and as shown in Figure 9, each local ES (at ES Level) has its local ontology for

describing at a semantic level the Web Services it exposes, and the structure/content of the

messages it exchanges. All these local ontologies differ, but they are fairly similar because a

common knowledge about employment exists as well as the needs for exchange.

The reference level of the SEEMP solution is made up of the central abstract machine, named

EMPAM (Employment Market Place Abstract Machine) and a set of SEEMP services. The Reference

Level owns a single consistent ontology out of those exposed by the ESs. Therefore the reference

ontology of SEEMP becomes the actual standard for the ESs that should provide the connectors (at

Connector level) for translating from the local ES ontologies to the reference one and vice versa.

SEEMP adopts WSMO [7] as a way to semantically describe Web Service and ontologies and WSML

[3] as a concrete syntax for encoding those descriptions.

IFC-WP4-D-CEF-004-05 Page 17 of 31 16/07/2018

Contract No. H2020 ï 730842

Figure 9: An overview of the SEEMP solution

Figure 10 shows the SEEMP connector architecture. A connector is provided by each ES that is

connected to the EMPAM and has the following two main responsibilities:

¶ Lifting and Lowering: the ESs involved in the SEEMP marketplace only deal in terms of

structured XML content and do not deal in terms of ontologies. Within the SEEMP

marketplace it is important that all content is ontologized so that it can be reasoned about,

thus the SEEMP connector must lift all messages received from a given ES to the ontology

level. This is done by converting the XML content received to WSML in terms of the local

ontologies of the ES. When communicating with the ES any outgoing data must be lowered

back to the XML level so that the ES can understand the content. Since WSMO elements

can be serialized in an RDF format, this task could be done by converting XML content to

RDF first and then converting RDF to WSML. In SEEMP this task is achieved by means of

an extension to R2O language [1], which enables to describe mappings between XML

schemas and ontologies, and to its related processor ODEMapster [21].

¶ Resolving Heterogeneity: each ES talks in its language, essentially having its local ontology

that represents its view on the employment domain. The SEEMP connector is responsible

for resolving these heterogeneity issues by converting all the ontologized content (the content

lifted from the XML received from the ES) into content in terms of the SEEMP reference

ontology. By doing this all the ESs in the marketplace talk in the same language, and thus

heterogeneity issues are resolved. Similar to the lowering back to XML, when communicating

with a given ES the SEEMP connector is also responsible for converting back from the

reference ontology to the local ontology of the given ES. Rather than managing mappings

between every possible ontology pair, which essentially becomes unmanageable once some

ESs have joined the marketplace, each ES needs only maintain mappings to and from the

reference ontology. These mappings represent a set of instructions (or rules) on how to

convert an instance from the local ontology to an instance of the reference ontology (and vice

versa). Technologically this is achieved using the WSMX Data Mediation [18]. This work is

made up of two components, the first being the design-time component, within which the ES

will describe the mappings between their local ontology and the reference ontology, and the

second being the run-time component, which is responsible for executing the mappings at

run-time to transform the messages between ontologies.

IFC-WP4-D-CEF-004-05 Page 18 of 31 16/07/2018

Contract No. H2020 ï 730842

Figure 10: The SEEMP Connector Architecture

2.3 ANY-TO-ONE CENTRALIZED SOLUTIONS INVESTIGATED BY

ST4RT

The ST4RT project decided to investigate two equivalent any-to-one centralized solutions for the

development of the converter of FSM and 918 messages. In both cases, the data representation of

the source and target standards is assumed to be available through XSD files. The first solution is

very similar to the one proposed by the IT2Rail project and described in Section 2.2.1. The second

solution presents similarities with the one proposed by the SEEMP project (see Section 2.2.2)

although supported by the latest technologies.

2.3.1 First Solution

The first solution for the conversion process is based on the lifting/lowering process to/from the

reference ontology guided by annotated Java classes. The activities that must be performed at

design time to setup this first solution are:

¶ Convert XSD schemas of the two standards into Java classes;
¶ Merge concepts from the XSD schemas of standards A and B into the Reference Ontology;

IFC-WP4-D-CEF-004-05 Page 19 of 31 16/07/2018

Contract No. H2020 ï 730842

¶ Align the gathered lookup and master data to the reference ontology;
¶ Convert lookup and master data into RDF and upload them into the RDF repository (i.e.,

Named Graph);
¶ Annotate Java classes with direct mappings to the reference ontology and with SPARQL

queries to perform non-trivial mappings.

Figure 11 depicts the abovementioned activities.

DESIGN TIME Concepts in
XSD

Standard A

Concepts in
XSD

Standard B

Reference
Ontology

merge merge

Lookup &
Master Data

Named
Graph

align convert

XSD
Standard A

XSD
Standard B

Java Classes
Standard A

Java Classes
Standard B

Annotated
Java Classes
Standard A

Annotated
Java Classes
Standard B

u
se

convert

convert

annotate

annotate

Figure 11: Set up of the first solution

Figure 12 shows the conversion process of the first solution. The process is the same proposed by

the IT2Rail project and described in Section 2.2.1 with only one difference. Since the ST4RT

conversion process needs to deal with non-trivial mappings, new types of annotations have been

defined (see D3.1 and D3.3) to support, e.g., the execution of SPARQL queries along lifting and

lowering phases.

IFC-WP4-D-CEF-004-05 Page 20 of 31 16/07/2018

Contract No. H2020 ï 730842

RUN TIME

XML
Standard A

Java Objects
Standard A

Reference
Ontology

Named
Graph

XML
Standard B

Java Objects
Standard B

unmarshal

marshal

lifting

lowering

SPARQL

SPARQL

Figure 12: The conversion process of the first solution

2.3.2 Second Solution

The second solution for the conversion process is based on the lifting/lowering process to/from a

local ontology and the reference ontology guided by annotated Java classes. The activities that must

be performed at design time to setup this second solution are:

¶ Convert XSD schemas of the two standards into Java classes;
¶ For each standard, create its local ontology from Java classes or from the XSD schema;
¶ Define rules to generate instances according to the reference ontology using data expressed

in local ñdialectò;
¶ Align the gathered lookup and master data to the reference ontology;
¶ Convert lookup and master data into RDF and upload them into the RDF repository (i.e.,

Named Graph);
¶ Annotate Java classes with mapping to the local ontologies. This activity can be omitted if

the local ontologies are generated from Java Classes.

Figure 13 depicts the abovementioned activities.

IFC-WP4-D-CEF-004-05 Page 21 of 31 16/07/2018

Contract No. H2020 ï 730842

DESIGN TIME

Reference
Ontology

Lookup &
Master Data

Named
Graph

align convert

XSD
Standard A

XSD
Standard B

Java Classes
Standard A

Java Classes
Standard B

Annotated
Java Classes
Standard A

Annotated
Java Classes
Standard B

convert

convert

annotate

annotate

Local
Ontology

Standard A

Local
Ontology

Standard B

create

create

create

create

align

align

use

use

Figure 13: Set up of the second solution

Figure 14 shows the conversion process of the second solution that differs from the one proposed

for the first solution since the lifting/lowering phases to/from the reference ontology are performed

using defined rules. These rules are also used for non-trivial mappings avoiding the use of

annotations (see D3.1 and D3.3) to support the execution of SPARQL queries.

RUN TIME

XML
Standard A

Java Objects
Standard A

Reference
Ontology

Named
Graph

XML
Standard B

Java Objects
Standard B

unmarshal

marshal

lifting

lowering

Local
Ontology

Standard A

Local
Ontology

Standard B

Figure 14: The conversion process of the second solution

IFC-WP4-D-CEF-004-05 Page 22 of 31 16/07/2018

Contract No. H2020 ï 730842

2.3.3 Comparison between the two Solutions

The two proposed solutions are equivalent but present the pros and cons reported in the following.

First Solution PROS:

¶ Based upon existing and tested standards/technologies.

First Solution CONS:

¶ Requires implementing how to manage SPARQL lifting/lowering annotations.
¶ Whenever the Reference Ontology is updated, the developers must revise the annotations
to align them to the new version. ñRevise the annotationsò requires to recompile the whole
converter.

¶ Developers must know W3C semantic web stack, SPARQL and Java annotations.

Second Solution PROS:

¶ ñCleanò solution that clearly separates ñdomain knowledgeò (i.e., local and reference

ontologies) from code (i.e., annotated Java classes).
¶ RDF data extraction can be implemented without using annotations. That means less
ñtechnologiesò need to be used by developers.

Second Solution CONS:

¶ The reference language supporting the definition of rules in local ontologies is SHACL that is

a very recent W3C Recommendation (20 July 2017) and there is just one implementation.
¶ SHACL Advance Features (e.g., SHACL rules) have not been finalized yet.

3. SELECTION OF TOOLS AND IDENTIFICATION OF MISSING
FEATURES

From the analysis of the two solutions, a list of seven requirements emerges. In this section, potential

tools to cover each requirement are proposed, and the selection process is justified. The selected

tools are then described in details and a preliminary list of missing features to fully cover the

requirements is provided.

R1. A language to define local ontologies as the ñshapesò of RDF data through a set of

rules/conditions.

Potential tools/solutions to cover R1:

¶ SPIN1 (SPARQL Inferencing Notation);

1 https://www.w3.org/Submission/spin-sparql/

https://www.w3.org/Submission/spin-sparql/

IFC-WP4-D-CEF-004-05 Page 23 of 31 16/07/2018

Contract No. H2020 ï 730842

¶ ShEx2 (Shape Expressions);

¶ SHACL3 (SHApes Constraint Language).

Selection process: SHACL (see Section 3.1 for details) has been selected to cover R1 ña language

to define local ontologies as the ñshapesò of RDF data through a set of rules/conditionsò since it is

the official W3C standard for the purpose. Older standards, such as SPIN and SHEX, have been

outdated by SHACL and are not developed anymore.

R2. Conversion of XSD Schemas to Java Classes and to support marshal/unmarshal phases

to/from Java objects.

Potential tools/solutions to cover R2:

¶ JAXB4 (Java Architecture for XML Binding).

Selection process: JAXB (see Section 3.2 for details) has been selected to cover R2 ñconversion of

XSD Schemas to Java Classes and to support marshal/unmarshal phases to/from Java objectsò

since it is a de facto standard and it is included in standard JAVA runtime environment.

R3. Edit/visualize the local and reference ontologies.

Potential tools/solutions to cover R3: several ontology editors have been proposed in the last

decade. The two most used and complete solutions are:

¶ Protegé5

¶ TopBraid Composer6

Selection process: TopBraid Composer (see Section 3.3 for details) has been selected to cover R3

ñedit/visualize the local and reference ontologiesò since, to the best of our knowledge, it is the only

product supporting both editing ontologies and SHACL Data shapes.

R4. Facilitate the annotation of Java Classes.

Potential tools/solutions to cover R4:

2 http://shex.io/shape-map/

3 https://w3c.github.io/data-shapes/shacl/

4 https://sourceforge.net/projects/jaxb-builder/

5 http://protege.stanford.edu/

6 www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/

http://shex.io/shape-map/
https://w3c.github.io/data-shapes/shacl/
https://sourceforge.net/projects/jaxb-builder/
http://protege.stanford.edu/
http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/

IFC-WP4-D-CEF-004-05 Page 24 of 31 16/07/2018

Contract No. H2020 ï 730842

¶ The state-of-the-art of manual and semi-automatic annotation tools described in Section 1.

Selection process: Due to the particularity of texts to be annotated (i.e., Java classes) and the

complexity of the annotations (see ST4RT D3.1 and D3.3), none of the tools is adapted to cover R4.

The annotation process will be performed manually.

R5. Convert lookup and master data.

Potential tools/solutions to cover R5:

¶ TopBraid EDG7 (Enterprise Data Governance);

¶ Talend4SW8 (Talend for Semantic web).

Selection process: Due to the simplicity of the lookup and master data (i.e., UIC internal codes)

needed for the demonstration of the ST4RT converter, the conversion process will be performed

manually. In case of more challenging data to be converted, both the above-mentioned potential

tools could be adopted to cover R5.

R6. Store the semantic graph.

Potential tools/solutions to cover R6:

¶ OpenLink Virtuoso9;

¶ Blazegraph10;

¶ Apache Jena TDB11.

¶ Ontotext GraphDB12.

Selection process: Ontotext GraphDB (see Section 3.4 for details) has been selected to cover R6

ñstore the semantic graphò for backward compatibility with IT2Rail RDF Framework. Moreover, it is

one of the backends that can be exploited both in RDF4J and Jena and it supports OWL2RL

inferences. Jena TDB has been discarded since it is optimized for reading, while our converter will

perform both reads and writes on the RDF repository.

7 www.topquadrant.com/products/topbraid-enterprise-data-governance

8 https://fbelleau.github.io/talend4sw/

9 https://virtuoso.openlinksw.com/

10 www.blazegraph.com

11 http://jena.apache.org/documentation/tdb/

12 http://graphdb.ontotext.com/

http://www.topquadrant.com/products/topbraid-enterprise-data-governance
https://fbelleau.github.io/talend4sw/
https://virtuoso.openlinksw.com/
http://www.blazegraph.com/
http://jena.apache.org/documentation/tdb/
http://graphdb.ontotext.com/

IFC-WP4-D-CEF-004-05 Page 25 of 31 16/07/2018

Contract No. H2020 ï 730842

R7. Support the lifting/lowering phases to/from the reference ontology using annotation.

Potential tools/solutions to cover R7:

¶ Sparta13;

¶ RDFBeans14;

¶ Empire15;

¶ Pinto16;

¶ SurfRDF17;

Selection process: Sparta and SurfRDF are Python-based libraries and therefore cannot be used in

our Java environment. Java-based libraries like Empire, Pinto, and RDFBeans all implement the

same set of annotations. Empire (see Section 3.5 for details) and Pinto (see Section 3.6 for details)

have been selected over RDFBeans to cover R7 ñsupport the lifting/lowering phases to/from the

reference ontology using annotationò just for backward compatibility with IT2Rail RDF Framework.

3.1 SHACL

SHACL (SHApes Constraint Language) is a W3C language for validating RDF graphs against a set

of conditions. These conditions are provided as shapes and other constructs expressed in the form

of an RDF graph. RDF graphs that are used in this manner are called "shapes graphs" in SHACL,

and the RDF graphs that are validated against a shapes graph are called "data graphs." As SHACL

shape graphs are used to validate that data graphs satisfy a set of conditions they can also be viewed

as a description of the data graphs that do satisfy these conditions. Such descriptions may be used

for a variety of purposes besides validation, including user interface building, code generation, and

data integration.

In scenarios where data come from a variety of sources, especially for data integration projects,

SHACL provides a way to describe the ñshapesò of the data so that applications can take better

advantage of that data. In addition to describing which properties go with which classes, SHACL

supports the specification of constraints on data that, when used by applications, can make it

easier to improve the quality of data with standardized models instead of procedural code.

13 https://github.com/mnot/sparta/

14 https://rdfbeans.github.io

15 https://github.com/mhgrove/Empire

16 https://github.com/stardog-union/pinto

17 https://github.com/cosminbasca/surfrdf

https://github.com/mnot/sparta/
https://rdfbeans.github.io/
https://github.com/mhgrove/Empire
https://github.com/stardog-union/pinto
https://github.com/cosminbasca/surfrdf

IFC-WP4-D-CEF-004-05 Page 26 of 31 16/07/2018

Contract No. H2020 ï 730842

SHACL offers several built-in types of constraints such as cardinality (minCount/maxCount), value

type and allowed values, but it is also possible to define more complex kinds of constraints for almost

arbitrary validation conditions. SHACL validation tools can verify whether the data fulfills the

constraints described by the data model, similar to how XML Schema or JSON Schema are being

used. While languages like XML Schema are limited to tree structures, SHACL is based on RDF and

supports the validation of graph-based and object-oriented data.

Advanced features18 of SHACL such as features to define custom targets, annotation properties,

user-defined functions, node expressions and rules are not yet finalized. At the time of writing, an

experimental implementation of such features is provided by TopQuadrant ñshaclò library19, which

also provides support for the official standard.

3.2 JAVA ARCHITECTURE FOR XML BINDING (JAXB)

Java Architecture for XML Binding (JAXB) is a software framework that allows Java developers to

map Java classes to XML representations. JAXB provides two main features: the ability to unmarshal

XML into Java objects and the inverse, i.e. to marshal Java objects back into XML.

For using JAXB, the preliminary step consists in binding the XML Schema. JAXB simplifies access

to an XML document from a Java program by presenting the XML document to the program in a

Java format. This preliminary step is to bind the XML schema into a set of Java classes that

represents the schema.

The unmarshaling of an XML document consists in creating a tree of content objects that represents

the content and organization of the document. The content objects are instances of the classes

produced by the preliminary step of XML Schema binding.

The marshaling of Java objects into XML consists in creating an XML document from a content tree.

3.3 TOPBRAID COMPOSER

TopBraid Composer is a fully featured semantic web modeling tool. It provides support for building,

managing and testing configurations of ontologies and RDF graphs, and generating SPARQL

queries ñby example.ò The tool is fully compliant with W3C standards, and it is implemented as an

Eclipse plugin. Its workspace provides a named graph RDF data store. Individual graphs in the

workspace can be stored in various ways, including RDF files, files in any format that TopBraid

Composer can auto-convert to RDF, and Relational Databases.

TopBraid Composer also supports the definition of SHACL Data Shapes. Note that SHACL support

in TopBraid Composer v5.3 is still at a relatively early stage and will improve in future releases.

18 https://www.w3.org/TR/shacl-af/

19 https://github.com/TopQuadrant/shacl

https://www.w3.org/TR/shacl-af/
https://github.com/TopQuadrant/shacl

IFC-WP4-D-CEF-004-05 Page 27 of 31 16/07/2018

Contract No. H2020 ï 730842

TopBraid Composer also supports the verification of mapping defined by Pinto along with the

development process.

3.4 GRAPHDB

Ontotext GraphDB is a Semantic Graph Database, compliant with W3C Standards. Semantic graph

databases (also called RDF triplestores) provide the core infrastructure for solutions where modelling

agility, data integration, relationship exploration and cross-enterprise data publishing and

consumption are important.

For easy use and compatibility with the industry standards, GraphDB implements the RDF4J

framework interfaces, the W3C SPARQL protocol specification and supports all RDF serialisation

formats. GraphDB is one of the few triple stores that support semantic inferencing at scale allowing

users to derive new semantic facts from existing facts. It handles massive loads, queries and

inferencing in real time.

3.5 EMPIRE

Empire provides a standard, widely-known Java persistence framework for use in Semantic Web

projects where data is stored in RDF and accessible through SPARQL queries. By providing an

implementation of Java Persistence API (JPA) and using it to abstract the minutiae of RDF, it lowers

the learning curve for new developers and helps provide a straightforward path for migrating or

enhancing existing traditional web applications to use semantic technologies.

The Java Persistence API provides Java developers with an object/relational mapping facility for

managing relational data in Java applications. Empire is an implementation of the JPA that uses a

triple store as a persistent layer and offers a mechanism to perform the conversion between Plain

Old Java Objects (POJOs) and RDF triples and vice versa.

Empire implements several features of the JPA, but there are features and portions of JPA that

Empire does not yet support. The configuration of Empire is controlled through simple properties or

XML format files loaded at startup. There is no tricky XML mapping language to learn; all mappings

are controlled through the standard JPA annotations.

3.6 PINTO

Pinto is a lightweight framework that provides mappings for RDF statements into POJOs and vice

versa. Pinto offers a mechanism to convert POJOs to RDF triples and vice versa. The offered

mechanism can exploit specific annotations of POJO methods and properties.

IFC-WP4-D-CEF-004-05 Page 28 of 31 16/07/2018

Contract No. H2020 ï 730842

Both Pinto and Empire support the following annotations:

- @RdfId: an annotation which specifies the properties to be used for generating the URI of

the object. By default, a hash of the object itself is used to generate a URI. But when present

on a getter or setter of one or more properties on the POJO, the values of those properties

will be used as the seed for the URI.

- @RdfProperty: an annotation which can be applied to a property on a POJO, either the getter

or the setter, which specifies the URI of the property when generating RDF for the POJO.

Normally, a URI for the property is auto-generated, but when this annotation is present, the

URI specified in the annotation is used instead.

- @RdfsClass: an annotation which can be applied to a class to specify the rdf:type of the

class when generating the RDF. When not present, no rdf:type assertion is generated for the

object.

- @Iri: annotation which can be used to control the URI assigned to an Enum.

The main difference between Pinto and Empire is that Pinto can operate even without annotations

by performing a ñdefault mapping.ò When annotations are missing, Pinto assumes that each class is

mapped to a concept with the same name and that each attribute is mapped to an RDF property

with the same name. Empire instead assumes that each unmapped class or attribute must not be

converted into triples.

3.7 PRELIMINARY ANALYSIS OF MISSING FEATURES

From a preliminary analysis of the selected tools, the current features of Empire and Pinto appear to

be not enough to cover R7 ñsupport the lifting/lowering phases to/from the reference ontology using

annotationò completely. The following list of missing features to fully support the any-to-one

centralized solutions (see Section 2.3) for the development of the ST4RT converter emerge:

¶ A solution to manage new lifting/lowering annotations (see D3.1 and D3.3) in existing Empire

codebase.

¶ A solution for managing concatenated rules in SHACL.

In details, Empire currently supports a limited number of annotations, allowing it to implement basic

mappings between a Java class and an ontological model. Its intended use is indeed to allow

programmers to write code in JPA/Hibernate style, treating RDF triples as if they were normal Java

objects. Performing complex mappings between structurally different Java classes and ontology

concepts is currently out of scope. D3.1 and D3.3 extend the set of annotations provided by Empire

to allow such mappings to be expressed. Such new mappings have therefore to be implemented by

modifying Empire to let it be aware of the existence of these new annotations and by adding new

annotation processors.

In case a SHACL solution will be implemented, the Jena-based SHACL library provided by

TopQuadrant currently lacks an implementation of chained rules. The rules executor performs just

IFC-WP4-D-CEF-004-05 Page 29 of 31 16/07/2018

Contract No. H2020 ï 730842

one simple evaluation of all the rules, and if rule A outputs triples which trigger rule B, rule B is not

executed. Since our use cases require performing complex mappings, it would be inefficient to repeat

the rules evaluation process until no new data are generated. Therefore a mechanism to keep track

of rules dependencies is required to be implemented by modifying the existing SHACL library.

4. CONCLUSIONS

Two equivalent any-to-one centralized solutions for the development of the ST4RT converter have

been proposed, and a list of requirements has been identified. Different potential tools and solutions

to cover each requirement have been proposed, and a selection process has been performed to

define the list of selected tools to be used for the archetypal implementation of the ST4RT converter.

From the analysis of the selected tools, a preliminary list of missing features to fully support the

development of the ST4RT converter has emerged. The full list of missing features will be defined

along the design of the ST4RT converter, and it will guide the implementation tasks.

REFERENCES

[1] Barrasa, J., Corcho, O., Gomez-Perez, A.: R2O, an extensible and semantically based

database-toontology mapping language. In: Second International Workshop on Semantic

Web and Databases. (2004)

[2] Bikakis N., Giannopoulos G., Dalamagas T., and Sellis T. (2010). Integrating keywords and

semantics on document annotation and search. On the Move to Meaningful Internet Systems,

OTM 2010, pp. 921ï938, 2010.

[3] de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The web service modeling language: An

overview. In: Proceedings of the 3rd European SemanticWeb Conference (ESWC2006),

Budva, Montenegro, Springer-Verlag (2006)

[4] Della Valle, E., Cerizza, D., Celino, I., Estublier, J., Vega, G., Kerrigan, M., ... & Monteleone,

G. (2007). SEEMP: an semantic interoperability infrastructure for e-government services in

the employment sector. The Semantic Web: Research and Applications, 220-234.

[5] Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., and Zien, J. Y. (2003, May).

SemTag and Seeker: Bootstrapping the semantic web via automated semantic annotation.

In Proceedings of the 12th international conference on World Wide Web (pp. 178-186). ACM.

[6] Dzbor, M., Motta, E., & Domingue, J. (2004, November). Opening up magpie via semantic

services. In International Semantic Web Conference (Vol. 3298, pp. 635-649).

IFC-WP4-D-CEF-004-05 Page 30 of 31 16/07/2018

Contract No. H2020 ï 730842

[7] Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., Domingue, J.:

Enabling Semantic Web Services ï The Web Service Modeling Ontology. Springer (2006)

[8] Giannopoulos, G., Bikakis, N., Dalamagas, T., & Sellis, T. (2010). GoNTogle: a tool for

semantic annotation and search. The Semantic Web: Research and Applications, 376-380.

[9] Gridinoc, L., Sabou, M., dôAquin, M., Dzbor, M., & Motta, E. (2008, June). Semantic browsing

with PowerMagpie. In European Semantic Web Conference (pp. 802-806). Springer, Berlin,

Heidelberg.

[10] Handschuh, S., & Staab, S. (2003). Cream: Creating metadata for the semantic web.

Computer Networks, 42(5), 579-598.

[11] Handschuh S. Creating Ontology-based Metadata by Annotation for the Semantic

Web. Ph.D. thesis, University of Karlsruhe, 2005

[12] Hogue, A., & Karger, D. (2005, May). Thresher: automating the unwrapping of

semantic content from the World Wide Web. In Proceedings of the 14th international

conference on World Wide Web (pp. 86-95). ACM.

[13] Kahan, J., Koivunen, M. R., Prud'Hommeaux, E., & Swick, R. R. (2002). Annotea: an

open RDF infrastructure for shared Web annotations. Computer Networks, 39(5), 589-608.

[14] Kalyanpur, A., Hendler, J., Parsia, B., & Golbeck, J. (2006). SMORE-semantic

markup, ontology, and RDF editor. MARYLAND UNIV COLLEGE PARK DEPT OF

COMPUTER SCIENCE.

[15] Kiyavitskaya, N., Zeni, N., Cordy, J. R., Mich, L., & Mylopoulos, J. (2009). Cerno:

Light-weight tool support for semantic annotation of textual documents. Data & Knowledge

Engineering, 68(12), 1470-1492.

[16] Kogut, P. A., & Holmes III, W. S. (2001, October). AeroDAML: Applying Information

Extraction to Generate DAML Annotations from Web Pages. In Semannot@ K-CAP 2001.

[17] Mendes, P. N., Jakob, M., García-Silva, A., & Bizer, C. (2011, September). DBpedia

spotlight: shedding light on the web of documents. In Proceedings of the 7th international

conference on semantic systems (pp. 1-8). ACM.

[18] Mocan, A., Cimpian, E., Kerrigan, M.: Formal model for ontology mapping creation.

In: International Semantic Web Conference. (2006) 459ï472

[19] Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., & Kirilov, A. (2004). KIMïa

semantic platform for information extraction and retrieval. Natural language engineering,

10(3-4), 375-392.

[20] Reuters, T. OpenCalais (2008). URL http://www. opencalais. com.

[21] Rodriguez, J.B., G´omez-P´erez, A.: Upgrading relational legacy data to the semantic

web. In: WWW ô06: Proceedings of the 15th international conference on World Wide Web,

New York, NY, USA, ACM Press (2006) 1069ï1070

IFC-WP4-D-CEF-004-05 Page 31 of 31 16/07/2018

Contract No. H2020 ï 730842

[22] Vargas-Vera, M., Moreale, E., Stutt, A., Motta, E., & Ciravegna, F. (2007). MnM: semi-

automatic ontology population from text. Ontologies: A Handbook of Principles, Concepts

and Applications in Information Systems. Integrated Series in Information Systems, 14, 373-

402.

[23] Vetere, G., & Lenzerini, M. (2005). Models for semantic interoperability in service-

oriented architectures. IBM Systems Journal, 44(4), 887-903.

.

